Model Evaluation
Overview
This section describes our model evaluation process. We use DVC to track evaluation metrics and compare different model versions.
Evaluation Pipeline
Our evaluation process includes:
- Metric Collection
- Accuracy
- Precision
- Recall
- F1 Score
-
Custom metrics
-
Model Comparison
- Compare different models
- Compare model versions
- Track improvements
- Visualize results
Pipeline Configuration
The evaluation pipeline is defined in dvc.yaml
:
stages:
evaluate_model:
cmd: python src/mlops/evaluation/evaluate.py
deps:
- data/processed/test.csv
- models/trained/model.pkl
- src/mlops/evaluation/evaluate.py
metrics:
- metrics/evaluation.json:
cache: false
Usage
To evaluate models:
# Run evaluation pipeline
dvc repro evaluate_model
# Show metrics
dvc metrics show
# Compare with previous version
dvc metrics diff
# Show detailed comparison
dvc exp show
Model Comparison
Example of comparing different models:
{
"random_forest": {
"accuracy": 0.85,
"precision": 0.83,
"recall": 0.86,
"f1": 0.84
},
"gradient_boost": {
"accuracy": 0.87,
"precision": 0.86,
"recall": 0.85,
"f1": 0.85
}
}
Best Practices
- Metric Selection
- Choose relevant metrics
- Consider business impact
-
Track multiple metrics
-
Evaluation Process
- Use consistent test data
- Document evaluation criteria
-
Version evaluation code
-
Results Documentation
- Record all experiments
- Document improvements
- Maintain comparison logs